|  e-ISSN: 2822-6127

Original article | SilvaWorld 2022, Vol. 1(1) 52-67

Conservation and Sustainable Use of Forest Genetic Resources of English Yew (Taxus baccata L.) in Bavaria

Muhidin Šeho, Barbara Fussi, Bernhard Rau & Darius Kavaliauskas

pp. 52 - 67   |  DOI: https://doi.org/10.29329/silva.2022.462.06   |  Manu. Number: MANU-2209-09-0005.R1

Published online: September 28, 2022  |   Number of Views: 79  |  Number of Download: 227


For sustainable forest development a stable, functional, and therefore species-rich ecosystem is required to fulfil the diverse functions of forests. Rare tree species contribute substantially to diversity and provided an important habitat function for other species. Further, they have a vital impact on the stability of forest ecosystems and increase their biodiversity. Under climate change, these tree species become more important and should be planted in the forest to divide upcoming risks among different tree species. In the study altogether 906 trees from 19 populations of English yew were sampled evenly along the Bavarian distribution range. Our study based on 13 isoenzyme markers identified substantial genetic variation between the populations. Based on genetic variation within and between studied populations seed stands and gene conservation units (GCU) were proposed. In addition, following our results provenance recommendations were drawn. Selected forest genetic resources (FGR) will be presented in the Bavarian Forest reproductive material (FRM) information system. In addition to dynamic in-situ conservation, an ex-situ conservation of the English yew is sought through long-term seed storage and the establishment of a seed orchard. Thus, the first 19 plus trees have been selected. The number of plus trees should be increased by further selection taking into consideration the balance between female and male English yew trees. All efforts will have a strong impact on the conservation of the FGR of English yew in Bavaria.

Keywords: Genetic diversity, FGR, GCU, Conservation strategies, Seed stands, Isoenzyme markers

How to Cite this Article?

APA 6th edition
Šeho, M., Fussi, B., Rau, B. & Kavaliauskas, D. (2022). Conservation and Sustainable Use of Forest Genetic Resources of English Yew (Taxus baccata L.) in Bavaria . SilvaWorld, 1(1), 52-67. doi: 10.29329/silva.2022.462.06

Šeho, M., Fussi, B., Rau, B. and Kavaliauskas, D. (2022). Conservation and Sustainable Use of Forest Genetic Resources of English Yew (Taxus baccata L.) in Bavaria . SilvaWorld, 1(1), pp. 52-67.

Chicago 16th edition
Šeho, Muhidin, Barbara Fussi, Bernhard Rau and Darius Kavaliauskas (2022). "Conservation and Sustainable Use of Forest Genetic Resources of English Yew (Taxus baccata L.) in Bavaria ". SilvaWorld 1 (1):52-67. doi:10.29329/silva.2022.462.06.


    Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., & Curtis‐McLane, S. (2008). Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evolutionary Applications, 1(1), 95-111. https://doi.org/10.1111/j.1752-4571.2007.00013.x

    Alfaro, R. I., Fady, B., Vendramin, G. G., Dawson, I. K., Fleming, R. A., Sáenz-Romero, C., Lindig-Cisneros, R. A, Murdock, T., Vinceti, B., Navarro, C. M., Skrøppa, T., Baldinelli, G., El-Kassaby, Y. A., & Loo, J. (2014). The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. Forest Ecology and Management, 333, 76-87. https://doi.org/10.1016/j.foreco.2014.04.006

    Bauhus, J., Forrester, D. I., Gardiner, B., Jactel, H., Vallejo, R., & Pretzsch H. (2017). Ecological stability of mixed-species forests. In H. Pretzsch, D. I. Forrester & J. Bauhus (Eds.), Mixed-Species Forests (pp. 337-382). Springer.

    BMU. (2009). Act on nature conservation and landscape management (Federal nature conservation act - BNatSchG) of 29 July 2009. https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Naturschutz/bnatschg_en_bf.pdf

    Bollmann, K., & Braunisch, V. (2013). To integrate or to segregate: Balancing commodity production and biodiversity conservation in European forests. In D. Kraus & F. Krumm (Eds.), Integrative approaches as an opportunity for the conservation of forest biodiversity (pp. 18-31). European Forest Institute.

    Caballero, A., Rodríguez-Ramilo, S. T., Avila, V., & Fernández, J. (2010). Management of genetic diversity of subdivided populations in conservation programmes. Conservation Genetics, 11(2), 409-419. https://doi.org/10.1007/s10592-009-0020-0

    Cao, C. P., Leinemann, L., Ziehe, M., & Finkeldey, R. (2004). Study of genetic variation and differentiation of yew (Taxus baccata L.) stands using izoenzyme and DNA marker. Allgemeine Forst und Jagdzeitung, 175(1), 21-28.

    Caudullo, G., Welk, E., & San-Miguel-Ayanz, J. (2017). Chorological maps for the main European woody species. Data in Brief, 12, 662-666. https://doi.org/10.1016/j.dib.2017.05.007 (Data: https://doi.org/10.6084/m9.figshare.5117440)

    Chybicki, I. J., Oleksa, A., & Kowalkowska, K. (2012). Variable rates of random drift in protected populations of English yew: implications for gene pool conservation. Conservation Genetics, 13, 899–911. https://doi.org/10.1007/s10592-012-0339-9

    Chybicki, I. J., & Oleksa, A. (2018). Seed and pollen gene dispersal in Taxus baccata, a dioecious conifer in the face of strong population fragmentation. Annals of Botany, 122(3), 409-421. https://doi.org/10.1093/aob/mcy081

    Doligez, A., & Joly, H. I. (1997). Genetic diversity and spatial structure within a natural stand of a tropical forest tree species, Carapa procera (Meliaceae), in French Guiana. Heredity, 79, 72-82.

    Donath, T. W., & Eckstein, R. L. (2008). Bedeutung genetischer Faktoren für die Wiederansiedlung seltener Pflanzengemeinschaften. Naturschutz und Landschaftsplanung, 40, 21-25.

    Dubreuil, M., Riba, M., Gonzalez-Martinez, S., Vendramin, G. G., Sebastiani, F., & Mayol, M. (2010). Genetic effects of chronic habitat fragmentation revisited: Strong genetic structure in temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. American Journal of Botany, 97(2), 303–310. https://doi.org/10.3732/ajb.0900148

    EU. (1999). Council Directive 1999/105/EC of 22 December 1999 on the marketing of forest reproductive material. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31999L0105

    Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Fady, B., Aravanopoulos, F. A., Alizoti, P., Mátyás, C., von Wühlisch, G., Westergren, M., Belletti, P., Cvjetkovic, B., Ducci, F., Huber, G., Kelleher, C. T., Khaldi, A., Kharrat, M. B. D., Kraigher, H., Kramer, K., Mühlethaler, U., Peric, S., Perry, A., Rousi, M., …Zlatanov, T. (2016). Evolution-based approach needed for the conservation and silviculture of peripheral forest tree populations. Forest Ecology and Management, 375, 66-75. https://doi.org/10.1016/j.foreco.2016.05.015

    FoVG. (2003). The German act on forest reproductive material. https://www.ble.de/DE/Themen/Wald-Holz/Forstliches-Vermehrungsgut/forstliches-vermehrungsgut_node.html

    Frankham, R., Ballou, J. D., & Briscoe, D. A. (2002). Introduction to conservation genetics. Cambridge University Press.

    Fussi, B., & Hübner, C. (2018). Die Edelkastanie - Genetische einblicke in den baum des jahres. Forschungszentrums Waldökosysteme der Universität Göttingen, B(83), 317.

    Geburek, T. (1997). Isozymes and DNA markers in gene conservation of forest trees. Biodiversity and Conservation, 6, 1639-1654.

    González-Martínez, S. C., Dubreuil, M., Riba, M., Vendramin, G. G., Sebastiani, F., & Mayol, M. (2010). Spatial genetic structure of Taxus baccata L. in the western Mediterranean Basin: Past and present limits to gene movement over a broad geographic scale. Molecular Phylogenetics and Evolution, 55(3), 805-815.

    Goudet, J. (2001). Fstat, a program to estimate and test gene diversities and fixation indices (version 2. 9. 3). University of Lausanne.

    Gregorius, H. R. (1974). Genetischer abstand zwischen populationen - I. Zur konzeption der genetischen abstandsmessung. Silvae Genetica, 23, 22-27.

    Gregorius H. R., & Roberds, J. H. (1986). Measurement of genetical differentiation between among subpopulations. Theoretical and Applied Genetics, 71, 826-834.

    Hageneder, F. (2007). Die eibe in neuem Licht: Eine monographie der gattung taxus. Neue Erde.

    Hattemer, H. H. (1995). Concepts and requirements in the conservation of forest genetic resources. Forest Genetics, 2(3), 125-134.

    Hemery, G. E., Clark, J. R., Aldinger, E., Claessens, H., Malvolti, M. E., O'connor, E., Raftoyannis, Y., Savill, P. S., & Brus, R. (2010). Growing scattered broadleaved tree species in Europe in a changing climate: A review of risks and opportunities. Forestry: An International Journal of Forest Research, 83(1), 65-81. https://doi.org/10.1093/forestry/cpp034

    Hertel, H. (1996). Inheritance of isozyme markers in English yew (Taxus baccata L.). Silvae Genetica, 45, 284-290.

    Hilfiker, K., Holderegger, R., & Gugerli, F. (2004). Dynamics of genetic variation in Taxus baccata: Local versus regional perspectives. Canadian Journal of Botany, 82, 219-227.

    Huber, G., Wurm, A., & Fussi, B. (2015). Verbreitung und genetik des feldahorns in Bayern. In LWF wissen 77 beiträge zum feldahorn (pp. 14-21). Bayerische Landesanstalt für Wald und Forstwirtschaft.

    Kavaliauskas, D., Šeho, M., Baier, R., & Fussi, B. (2021). Genetic variability to assist in the delineation of provenance regions and selection of seed stands and gene conservation units of wild service tree (Sorbus torminalis (L.) Crantz) in southern Germany. European Journal of Forest Research140(3), 551-565.

    Kimura, M., & Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics, 49(4), 725-738. https://doi.org/10.1093/genetics/49.4.725

    Klumpp, R., & Dhar, A. (2011). Genetic variation of Taxus baccata L. populations in the Eastern Alps and its implications for conservation management. Scandinavian Journal of Forest Research, 26(4), 294-304. https://doi.org/10.1080/02827581.2011.566888

    Knoke. T., Ammer, C., Stimm, B., & Mosandl R. (2008). Admixing broadleaved to coniferous tree species: A review on yield, ecological stability and economics. European Journal of Forest Research, 127(2), 89-101. https://doi.org/10.1007/s10342-007-0186-2

    Komárková, M., Novotný, P., Cvrčková, H., & Máchová, P. (2022). The genetic differences and structure of selected important populations of the endangered Taxus baccata in the Czech Republic. Forests, 13(2), 137. https://doi.org/10.3390/f13020137

    Konnert, M., & Cremer, E. (2011). Herkunftswahl im klimawandel-forstgenetische erkenntnisse als entscheidungshilfe. In W. D. Maurer & B. Haase (Eds.), Holzproduktion auf forstgenetischer grundlage im hinblick auf klimawandel und rohstoffverknappung (pp. 60-63). Mitteilungen aus der Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz.

    Konnert, M., Cremer, E., & Fussi, B. (2014). Genetische variation wichtiger waldbaumarten in Bayern. In LWF wissen 74 forstgenetik, forstgenressourcen und forstvermehrungsgut (pp. 14-21). Bayerische Landesanstalt für Wald und Forstwirtschaft.

    Konnert, M., Baier, R., Müller, D., & Huber, G. (2015). Konzept zum erhalt und zur nachhaltigen nutzung forstlicher genressourcen in Bayern. Bayerische Forstverwaltung.

    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5), 1179-1191. https://doi.org/10.1111/1755-0998.12387

    Koskela, J., Lefèvre, F., Schueler, S., Kraigher, H., Olrik, D. C., Hubert, J., Longauer, R., Bozzano, M., Yrjänä, L., Alizoti, P., Rotach, P., Vietto, L., Bordács, S., Myking, T., Eysteinsson, T., Souvannavong, O., Fady, B., Cuyper, B. D., Heinze, B., ...Ditlevsen, B. (2013). Translating conservation genetics into management: Pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity. Biological Conservation, 157, 39-49. https://doi.org/10.1016/j.biocon.2012.07.023

    Küster, H. (1994). Die stellung der eibe in der nacheiszeitlichen waldentwicklung und die verwendung ihres holzes in vor- und frühgeschichtlicher zeit. In LWF wissen 10 beiträge zur eibe (pp. 4-9). Bayerische Landesanstalt für Wald und Forstwirtschaft.

    Laikre, L., Allendorf, F. W., Aroner, L. C., Baker, C. S., Gregovich, D. P., Hansen, M. M., Jackson, J. A., Kendall, K., McKelvey, K. S., Neel, M. C., Olivieri, I., Ryman, N., Schwartz, M. K., Bull, R. S., Stetz, J. B., Tallmon, D. A., Taylor, B. L., Vojta, C. D., Waller, D. M., & Waples, R. S. (2010). Neglect of genetic diversity in implementation of the convention of biological diversity. Conservation Biology24(1), 86-88. https://doi.org/10.1111/j.1523-1739.2009.01425.x

    Lewandowski, A., Burczyk, J., & Mejnartowicz, L. (1992). Inheritance and linkage of some allozymes in Taxus baccata L. Silvae Genetica, 41(6), 342-347.

    Lewandowski, A., Burczyk, J., & Mejnartowicz, L. (1995). Genetic structure of English yew (Taxus baccata L.) in the Wierzchlas Reserve: Implications for genetic conservation. Forest Ecology and Management73(1-3), 221-227.

    Linares, J. C. (2013). Shifting limiting factors for population dynamics and conservation status of the endangered English yew (Taxus baccata L., Taxaceae). Forest Ecology and Management, 291, 119-127. https://doi.org/10.1016/j.foreco.2012.11.009

    Lindner, M., Maroschek. M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M. J., & Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698-709. https://doi.org/10.1016/j.foreco.2009.09.023

    Litkowiec, M., Lewandowski, A., & Wachowiak, W. (2018). Genetic variation in Taxus baccata L.: A case study supporting Poland’s protection and restoration program. Forest Ecology and Management, 409, 148-160. https://doi.org/10.1016/j.foreco.2017.11.026

    Marshall, D. R., & Brown, A. H. D. (1975). Optimum sampling strategies in genetic conservation. In O. H. Frankel & J. G. Hawkes (Eds.), Crop genetic resources for today and tomorrow (pp. 53-80). CUP Archive.

    Maruyama, T. (1970). Effective number of alleles in a subdivided population. Theoretical Population Biology, 1(3), 273-306. https://doi.org/10.1016/0040-5809(70)90047-X

    Mayol, M., Riba, M., González-Martínez, S. C., Bagnoli, F., de Beaulieu, J. L., Berganzo, E., Burgarella, C., Dubreuil, M., Krajmerová, D., Paule, D., Romsakova, I., Vettori, C., Vincenot, L., & Vendramin, G. G. (2015). Adapting through glacial cycles: Insights from a long-lived tree (Taxus baccata). New Phytologist, 208(3), 973-986. https://doi.org/10.1111/nph.13496

    Myking, T., Vakkari, P., & Skrøppa, T. (2009). Genetic variation in northern marginal Taxus baccata L. populations. Implications for conservation. Forestry, 82(5), 529-539.

    Namkoong, G. (1984). A control concept of gene conservation. Silvae Genetica, 33(4-5), 160-463.

    Neel, M. C., & Cummings, M. P. (2003). Effectiveness of conservation targets in capturing genetic diversity. Conservation Biology, 17(1), 219-229. https://doi.org/10.1046/j.1523-1739.2003.01352.x

    Nei, M. (1972). Genetic distance between populations. The American Naturalist, 106(949), 283-292. https://doi.org/10.1086/282771

    Neophytou, C. H., Fussi, B., & Konnert, M. (2017). Genetische variation bei berg-ahorn in Deutschland: Erkenntnisse aus molekulargenetischen daten und anbauversuchen. Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt, 16, 109-122. https://doi.org/10.17875/gup2017-1062

    Pardo, L. M., MacKay, I., Oostra, B., van Duijn, C. M., & Aulchenko, Y. S. (2005). The effect of genetic drift in a young genetically isolated population. Annals of Human Genetics, 69(3), 288-295. https://doi.org/10.1046/J.1469-1809.2005.00162.x

    Paul, M., Hinrichs, T., Janßen, A., Schmitt, H. P., Soppa, B., Stephan, R., & Dörflinger, H. (2010). Forest genetic resources in Germany - Concept for the conservation and sustainable utilization of forest genetic resources in the federal republic of Germany. Federal Ministry of Food Agriculture and Consumer Protection.

    Peakall, R., & Smouse, P. E. (2006). GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research - An update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Petit, R. J., Elmousadik, A., Pons, O. (1998). Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12(4), 844-855. https://doi.org/10.1111/j.1523-1739.1998.96489.x

    Porth, I., & El-Kassaby, Y. A. (2014). Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity6(2), 283-295.

    Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959. https://doi.org/10.1093/genetics/155.2.945

    Rajewski, M., Lange, S., & Hattemer, H. H. (1999). Genetic inference on the embryo of yew (Taxus baccata L.). Forest Genetics, 6(1), 55-58.

    Rajora, O. P., Rahman, M. H., Buchert, G. P., & Dancik, B. P. (2000). Microsatellite DNA analysis of genetic effects of harvesting in old‐growth eastern white pine (Pinus strobus) in Ontario, Canada. Molecular Ecology, 9(3), 339-348. https://doi.org/10.1046/j.1365-294x.2000.00886.x

    Rajora, O. P., & Mosseler, A. (2001). Challenges and opportunities for conservation of forest genetic resources. Euphytica, 118, 197-212.

    Riederer, J., & Fritsch, M. (2013). Erfassung und dokumentation genetischer ressourcen des feldahorns (Acer campestre) und der eibe (Taxus baccata) in Deutschland. Bundesanstalt für Landwirtschaft und Ernährung.

    Ritland, K., Meagher, L. D., Edwards, D. G. W., & El-Kassaby, Y. A. (2005). Isozyme variation and the conservation genetics of Garry oak. Canadian Journal of Botany, 83(11), 1478-1487. https://doi.org/10.1139/b05-114

    Rotach, P. (1999). In situ conservation and promotion of noble hardwoods: Silvicultural management strategies. In Noble hardwoods network. Report of the third meeting (pp. 91-100). International Plant Genetic Resources Institute.

    Ruprecht, H., Dhar, A., Aigner, B., Oitzinger, G., Vacik, K.  (2010). Structural diversity of English yew (Taxus baccata L.) populations. European Journal of Forest Research, 129(2), 189-198. https://doi.org/10.1007/s10342-009-0312-4

    Savolainen, O. (2000). Guidelines for gene conservation based on population genetics. XXI IUFRO World Congress. Kuala Lumpur.

    Scheeder, T. (1994). Ursachen des rückganges der eibenvorkommen und die möglichkeit des schutzes durch forstlich integrierten anbau. In LWF wissen 10 beiträge zur eibe (pp. 10-14). Bayerische Landesanstalt für Wald und Forstwirtschaft.

    Schelhaas, M. J., Nabuurs, G. J, Hengeveld, G., Reyer, C., Hanewinkel, M., Zimmermann, N. E., & Cullmann, D. (2015). Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe. Regional Environmental Change, 15(8), 1581-1594. https://doi.org/10.1007/s10113-015-0788-z

    Schröder, J., Kätzel, R., Schulze, T., Kamp, T., Huber, G., Höltken, A., Steiner, W., & Konnert, M. (2013). Seltene baumarten in Deutschland: Zustand und gefährdung. AFZ-DerWald, 68(12), 4-6.

    Schütt, P. (1995). Taxus baccata Linné, 1753. In P. Schütt, G. Aas & U. Lang (Eds.), Enzyklopädie der holzgewächse: Handbuch und atlas der dendrologie, Teil III-1. Ecomed, Landsberg.

    Šeho, M., Fussi, B., Kavaliauskas, D., Teodosiu, M., & Janßen, A. (2022). Herkunftskontrolle mittels genetischer marker am beispiel weißtanne. AFZ-DerWald, 4, 24-27.

    Spiecker, H. (2006). Nature based forestry in central Europe: Alternatives to industrial forestry and strict preservation. In J. Diaci (Ed.), Minority tree species - A Challenge for multi-purpose forestry (pp. 47-59). Studia Forestalia Slovenica.

    Stauber T, & Hertel, H. (1999). MacGEN - Populationsgenetik mit SAS. http://www.mol.schuttle.de/wspc/genetik1.htm

    Tröber, U., & Ballian, D. (2011). Genetic characterization of English yew (Taxus baccata L.) populations in Bosnia and Herzegovina. European Journal of Forest Research, 130, 479-489. https://doi.org/10.1007/s10342-010-0436-6

    Tumpa, K., Liber, Z., Šatović, Z., Medak, J., Idžojtić, M., Vidaković, A., Vukelić, J., Šapić, I., Nikl, P., & Poljak, I. (2022). High level of phenotypic differentiation of common yew (Taxus baccata L.) populations in the north-western part of the Balkan peninsula. Forests13, 78. https://doi.org/10.3390/f13010078

    UN. (1992). Convention on Biological Diversity. https://www.cbd.int/doc/legal/cbd-en.pdf

    Willi, Y., Van Buskirk, J., & Hoffmann, A. A. (2006). Limits to the adaptive potential of small populations. Annual Review of Ecology, Evolution, and Systematics, 37, 433-458.

    Wolff, K., Depner, B., Logan, S. A., & Heurich, M. (2021). Informed conservation management of rare tree species needs knowledge of species composition, their genetic characteristics and ecological niche. Forest Ecology and Management, 483, 118771. https://doi.org/10.1016/j.foreco.2020.118771

    Zarek, M. (2009). RAPD Analysis of genetic structure in four natural populations of Taxus baccata from southern Poland. Acta Biologica Cracoviensia Series Botanica, 51(2), 67-75.